
Project Overview: Advanced Deepfake Detection 
with Deep Learning Models

In this project, we developed a cutting-edge system for detecting deepfake using deep learning techniques. 
Below is a detailed description of the process and the impressive results we achieved

1. Dataset Construction:

The foundation of the project was a dataset designed by [1] specifically for face forgery detection. The dataset 
creation involved three key steps:

� Raw Image Collection: Gathered real human face images and manually selected high-quality examples for 
the training process�

� Forgery Synthesis: For each real face image, generated forged faces by swapping identities. This process was 
repeated until the forged faces could reliably fool a basic classifier�

� Multi-task Annotation: Comprehensive annotations were applied to the faces, labeling various attributes 
necessary for training the models effectively.

Fig1. Dataset construction workflow
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2. Image Preprocessing:

Prior to training, the images underwent a series of preprocessing steps aimed at improving model performance 
and generalization. The images were first resized to a uniform dimension to standardize the input for the models. 
To further enhance the diversity of the training data and reduce overfitting, we applied several data augmentation 
techniques. These included random horizontal flips, slight rotations, and variations in brightness, contrast, and 
saturation. By introducing these random transformations, we ensured that the model would learn to be robust to 
different orientations and lighting conditions.

Additionally, we normalized the images to align with the pre-training statistics of popular deep learning models, 
allowing for more efficient and stable training. Finally, a technique known as Random Erasing was applied to 
simulate occlusions and improve the model’s ability to handle partially obscured faces in real-world scenarios



3. Model Training:

For the face deepfake detection task, we experimented with a variety of deep learning models:

� Pre-trained Models: We utilized advanced pre-trained models, such as Xception and other state-of-the-art 
architectures, known for their exceptional feature extraction capabilities. These models, pre-trained on large 
image datasets, were fine-tuned on our face forgery dataset to leverage their powerful visual recognition 
features�

� Custom CNN Models: In addition to pre-trained networks, we designed custom convolutional neural 
networks (CNNs) to compare their performance with the pre-trained models. This approach allowed us to test 
different architectures and determine the most effective solution.

After training these models, we achieved prediction accuracies ranging from 94% to 96% on the test dataset.

4. Cross-validation & Model Stability:

To ensure the models were stable and generalized well, we implemented Stratified K-Fold Cross-Validation. 
Unlike standard cross-validation, stratified folding ensures that the data is split in a way that maintains the same 
distribution of classes (real vs. forged) across all folds. This approach helped reduce any potential bias in the data 
splits, ensuring the model was tested on a diverse and representative set of images, improving its robustness 
against noise.

5. Model Ensembling:

To further enhance performance, we employed an ensemble learning approach, combining multiple trained 
models. By aggregating the predictions from each individual model, the ensemble method produced a more 
accurate and reliable outcome. This technique capitalized on the strengths of each model and improved overall 
performance.

Fig 2. Scheme of prediction

Prediction 
Scheme

Data preprocessing

Cross-Validation
1

Model 1_1 Model 1_2 Model 1_3 Model 1_4 Model 1_5

Cross-Validation

Model 5_1 Model 5_2 Model 5_3 Model 5_4 Model 5_5

5

Models Ensemble

6

Prediction



6. Results on Test Data:

The ensemble model achieved outstanding results on the test dataset:

Accuracy 95.40%

F1 Score: 95.42%

Precision: 94.19%

Recall: 96.69%

AUC (Area Under the Curve): 99.16%

Fig3. Heatmap for test dataset
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Fig 4. ROC-AUC for Models Ensemble
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These results highlight the effectiveness of our approach in detecting deepfakes, achieving high accuracy, 
excellent recall, and an AUC score nearing perfection

Conclusion:

Our face forgery detection system, built using a combination of advanced techniques and deep learning models, 
has proven to be highly effective and robust. With sophisticated image preprocessing, and a strategic ensemble 
approach, we’ve developed a solution that performs exceptionally well in detecting deepfakes with high accuracy 
and reliability. This system is ideal for applications in security, identity verification, and other fields where face is 
critical.
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